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A TWO-STATE ANALYSIS OF FIXED-INTERVAL
RESPONDING IN THE PIGEON!
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The behavior of pigeons on six geometrically spaced fixed-interval schedules ranging from
16 to 512 sec is described as a two-state process. In the first state, which begins immediately
after reinforcement, response rate is low and constant. At some variable time after reinforce-
ment there is an abrupt transition to a high and approximately constant rate. The point of
rapid transition occurs, on the average, at about two-thirds of the way through the interval.
Response rate in the second state is an increasing, negatively accelerated function of rate of

reinforcement in the second state.

Skinner (1938, p. 125), in the first parametric
study of fixed-interval (FI) behavior in rats,
pointed out that after prolonged exposure, cer-
tain intervals show signs of a temporal discrim-
ination, in that there appears to be a pause
after reinforcement, followed by a constant
rate of response. Cumming and Schoenfeld
(1958) showed that pigeons under extended
exposure to an FI 30-min schedule developed
what they called break-and-run performance;
that is, after an initial pause, the subject
started responding at a constant terminal rate.
Sherman (1959) also reported that rats on FlIs
ranging from 10 sec to 4 min developed break-
and-run behavior after extended training.

These studies characterize fixed-interval re-
sponding after extended training as a discrete
two-state process, that is, as an extended pause
after reinforcement with little or no respond-
ing (state 1), followed by a rapid transition to
a high and constant response rate (state 2). To
document their case, these investigators pre-
sented selected cumulative records for indi-
vidual animals demonstrating break-and-run
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performance. These essentially qualitative de-
scriptions of behavior, however, do not permit
an exact characterization of the response pa-
rameters of the typical interval, i.e., the length
of the pause, the variation in pause length, the
growth of rate after pause, etc. The estimation
of such response parameters is of crucial im-
portance in interpreting certain overall mea-
sures of fixed-interval performance. For in-
stance, if fixed-interval performance involves
a temporal discrimination, the average rate
over an entire interval involves the averaging
of two entirely different kinds of behavior: the
first-state behavior, which includes little or no
responding; and the second-state behavior,
which includes a high steady rate of respond-
ing. Such an averaging technique may obscure
the real relationship between reinforcement
frequency and response rate on a fixed-interval
schedule.

The present study attempted to develop a
quantitative method for describing break-and-
run performance to determine the role of
temporal discriminations in fixed-interval per-
formance and the interaction between tem-
poral discriminations and measures of response
strength. This method involved collecting and
analyzing all interresponse times emitted dur-
ing the terminal sessions at each FI value in
order to permit a detailed analysis of each
interval.

METHOD
Subjects

Six male adult White Carneaux pigeons
were maintained at 809, of their free-feeding
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weight. They had previously experienced re-
peated sessions of continuous reinforcement
followed by extinction. The birds were run
seven days a week and fed enough grain after
each session to maintain them at the desired
weight.

Apparatus

An experimental chamber of the type de-
scribed by Ferster and Skinner (1957) was used.
The dimensions of the subject’s chamber were
27.9 by 27.9 by 27.9 cm. A single Gerbrands
response key was mounted on one wall be-
hind a 1.9-cm diameter hole at a height of
20.6 cm and transilluminated by a white light.
Each effective response produced a feedback
click. Eleven and four-tenths cm beneath the
key was a 5.1- by 5.1-cm opening in the panel
through which a hopper filled with mixed
grain could be presented. The reinforcer was
a 2.9-sec period of access to grain. During the
reinforcement cycle, the key light was extin-
guished and the grain hopper was illuminated
by two 6-w bulbs directly above. Stimulus and
reinforcement events were scheduled using re-
lay circuitry. White noise was continuously
present.

In addition to the standard recording de-
vices, such as counters and a cumulative re-
corder, Sodeco-Geneve type 1Tpb3 print-out
counters were used to record interresponse
times (IRTs). To record very short IRTs it
was necessary to use three print-out counters
operating in sequence. At the beginning of
each interval, counter one started to count.
The first response terminated counting on
counter one and initiated its print cycle. The
first response also switched the output of the
pulsing device to counter two. Hence, counter
two counted the IRT of the second response
while counter one was printing. Counter three
was added in the same fashion to insure that
no response would be lost due to the print
time (200 msec) of the Sodeco counter. The
counters were not reset until reinforcement
occurred.

Data Processing Technique

The data from the last three days on each
FI value were punched onto IBM cards by the
experimenter and three professional key-
punchers. Since the data on each tape were
cumulative over an interreinforcement inter-
val, IRTs were determined by subtracting the
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n-1th number from the nth number in an in-
terval. If any of these numbers was negative
(indicating a key-punch error), the entire inter-
reinforcement interval was rejected.

Also, the omission or addition of a response
to the interreinforcement interval by a key-
puncher was determined by counting the
number of responses per interval on each tape.
These numbers had to satisfy one of the fol-
lowing restrictions or the interval was rejected.
These were: (1) N;=No+1=N;+1; (2
Nl = N2 = N3 + 1; (3) Nl = N2 = Ns; Where
N; = the number of responses on tape i. These
restrictions follow directly from the recording
technique.

These two error-rejection procedures could
conceivably introduce a systematic bias. If key-
punch errors are assumed to occur in a random
fashion, more errors are likely to occur in in-
tervals containing a greater number of re-
sponses. To attempt to determine the max-
imum systematic error committed in this way,
the data from one bird with the highest inter-
val rejection rate (339,) and one of the highest
average number of responses per interval (150)
were analyzed further. The mean number of
responses per interval was computed for the
entire set of intervals and compared with the
mean number of responses for only the ac-
cepted intervals. A mean difference of six re-
sponses in the predicted direction was found.
This difference represents only a 49, error
rate. Since this is the error rate for the bird
with the most intervals rejected, the average
rate is certain to be considerably lower. The
effect of this systematic error then, should be
small enough in relation to the major effects
to be insignificant. The remaining data from
the three tapes were then merged to yield the
fixed intervals upon which subsequent analysis
was based.

Table 1

Experimental design. The number in the cell is the
bird number.

Ses- Fixed Intervals (in sec)
Order sions 16 32 64 128 256 512

(124) 451 452 258 254 325 255
(39) 258 254 451 255 452 325
(87) 255 451 254 325 258 452
(75) 325 258 255 452 451 254
(47) 254 325 452 253 255 451
(53) 452 255 325 451 254 253
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Procedure

The six subjects experienced each of six
geometrically spaced fixed-interval schedules
ranging from 16 to 512 sec according to the
Latin Square design of Table 1. The second
column gives the number of sessions at each
point. The sessions lasted until 55 reinforce-
ments were produced. All FI 512-sec schedules
were run overnight.

RESULTS

Figure 1 presents 10 cumulative response in-
tervals for Bird 451 on each value of FI. (The
cumulative records were reconstructed from
the IRTs of the eleventh through twentieth
processed intervals from the first terminal ses-
sion.) The fifth interval in each set of 10 has
been enlarged and presented to the right of
the 10 cumulative intervals. An examination
of these records indicates break-and-run per-
formance. Immediately after reinforcement
there appears to be little if any responding,
although occasional responses occur. At some
point after reinforcement, the behavior
changes abruptly to a high and approximately
constant rate of response. Occasional devia-
tions from this pattern can be noted. For in-
stance, the second interval on FI 512-sec ex-
hibits a scallop pattern, i.e., the response rate
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Fig. 1. Selected cumulative response records for Bird
451 on six different fixed-interval schedules. The fifth
interval in each set of 10 has been enlarged and pre-
sented to the right.
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increases continuously over the interval. The
fifth interval on FI 128-sec, on the other hand,
shows a fairly abrupt transition to a high rate
which gradually declines toward the end of
the interval. The majority of intervals, how-
ever, indicate a two-state process, an extended
pause after reinforcement with little or no
responding, followed by a rapid acceleration
to a high and approximately constant rate of
response.

To characterize the parameters of break-
and-run responding some way must be found
to determine the breakpoint, the rate before
the breakpoint, and the rate after it. The time
to the first response would seem to be a likely
candidate for estimating the point of maxi-
mum acceleration (the breakpoint). Visual in-
spection of the cumulative records, however,
shows that the first response does not always
indicate the point where the change in rate
is most rapid. Often, one or more responses
occur in a seemingly random fashion before
the rate accelerates to its terminal value. The
subsequent averaging of rate before and after
the first response would result in a smoothing
of the individual function.

A graphical procedure which suggests itself
is (1) to determine the point of maximum ac-
celeration (the breakpoint) by eye, (2) fit one
straight line to the part of the cumulative re-
sponse interval which is before the breakpoint
(state 1), and (8) fit another straight line to the
portion of the interval after the breakpoint
(state 2) so that these two straight lines inter-
sect at the breakpoint. Figure 2 shows how
this graphical procedure can be applied to a

I'
Fig. 2. The separation of a typical cumulative re-
sponse interval into a first and second state. The point

of maximum acceleration is located at “a” and divides
the interval into two states (see text).
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typical cumulative response interval (the fifth
interval of Bird 451 on FI 512-sec). The point
of maximum acceleration (the second deriv-
ative) is estimated by eye and is marked “a”.
A straight line through the origin can be fitted
to the part of the record before the breakpoint.
A second straight line intersecting the first at
the breakpoint can be fitted to the remainder
of the cumulative record. If this procedure
were carried out for all the interreinforcement
intervals, an average cumulative response
record could be obtained for a group of FIs
after first superimposing their breakpoints.
The numerical analogue to this graphical
procedure is to use a least-squares procedure
to determine the best fitting two straight lines
to each cumulative response interval. Since
the breakpoint is one of the parameters to be
determined, an iterative process is employed
in which the point of intersection of these two
lines is systematically varied until the sum
of squared deviations is minimized. The point
of intersection that minimizes the sum of
squared deviations from the lines is taken as
the breakpoint. The details of this procedure
are outlined in the Appendix.

Once the breakpoint for each interval has
been determined, the average momentary rate
before and after the breakpoint can be de-
termined in the following way. First, the num-
ber of responses in the 4-sec period following
the breakpoint for each interval is determined.
Second, this number is summed over all inter-
vals in question. Third, the sum is divided by
four times the number of intervals to obtain
the average momentary rate (responses/sec)
for the 4-sec period following the breakpoint.
These three steps are then repeated for the
second 4-sec period following the breakpoint,
and so on, until no more instances are en-
countered. This procedure is then repeated
for the 4-sec periods preceding the breakpoint.
One drawback of this technique is that the
number of intervals represented in each 4-sec
time period decreases as distance from the
breakpoint increases in either direction. For
example, if on FI 64-sec the breakpoint occurs
at 12 sec, there are only three 4-sec periods be-
fore the breakpoint and thirteen 4-sec periods
after it. If for a second interval the breakpoint
occurs at 48 sec, there are 12 intervals before
the breakpoint and only four after it. Hence,
an average cumulative record based on these
two hypothetical intervals would have twenty-
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five 4-sec periods, i.e., would be 100 sec long.
This would mean that the estimate of rate for
the first nine and the last nine 4-sec periods
would be based on a single interval only, while
the estimate of rate for the intermediate 4-sec
periods would be based on an average of two
intervals. And, in general, the number of in-
tervals represented in each 4-sec time period
would decrease as distance from the break-
point increased. To eliminate unreliable esti-
mates of rate in the subsequent analysis, only
those time segments for which there were 20
or more occurrences are included.

Figure 3 (top) shows the results of such cal-
culations for Bird 451 on FI 256-sec. Rate
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Fig. 3. Top. Response rate before and after break-
point (dotted line) for Subject 451 on FI 256-sec. Four-
sec time segments (see text) were used. Hence, one unit
on the abscissa (comprising 10 time segments) repre-
sents 40 sec. Bottom. Average cumulative response rec-
ord for Bird 451 on FI 256-sec when records are aver-
aged after superimposing breakpoints (see text).
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before the breakpoint (dotted line) is low and
approximately constant. In the vicinity of the
breakpoint there is a rapid acceleration to a
high and approximately constant rate. In the
bottom half of Fig. 3, the number of responses
in each 4-sec time segment was cumulated to
present an ‘‘average” cumulative record when
rate is averaged after first superimposing the
breakpoints. (Note that the length of this
average cumulative record is greater than 256
sec due to the fact that records are averaged
after superimposing the breakpoints.) A com-
parison of this average cumulative record with
individual intervals for the same bird (Fig. 1)
shows that this method of averaging reflects
the pattern of responding of the individual
interval.

Figure 4 presents average cumulative records
for Bird 451 on all values of FI using the
breakpoint averaging technique. Figure 5 pre-
sents average cumulative records averaged
over all birds for all values of FI using the
same technique. (Four-sec time intervals were
used for FI 64-sec and above. One- and two-
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sec time segments were used for FI 16-sec and
32-sec respectively to permit finer resolution of
these intervals.) When rate is averaged after
superimposing breakpoints, the average rec-
ords reflect the break-and-run, i.e., two-state
nature of fixed-interval responding. Response
rate at the beginning of the interval is low and
approximately constant. At some point in the
interval there is a rapid acceleration to a high
and constant rate. This transition is more
abrupt for shorter FIs. The second-state rate
also appears to decrease as FI values increase.

Hence, the asymptotic behavior on an FI
schedule may be described, to a first approxi-
mation, as consisting of two states. In state
one, which begins immediately after reinforce-
ment, there is a low and approximately con-
stant rate of response. At some point during
the interval there is a rapid acceleration to a
high and approximately constant rate. This
point of rapid acceleration varies from interval
to interval.

Figure 6 presents the distribution of break-
points for Bird 451 on all values of FI. An

Jy/

Fig. 4. Average cumulative response records for Bird 451 on six different fixed-interval schedules when rec-
ords are averaged after superimposing breakpoints (see text). Four-sec time segments were used for FI 64-,
128-, 256-, and 512-sec. One- and 2-sec time segments were used for FI 16- and 32-sec respectively.
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512

Fig. 5. Average cumulative response records averaged over all birds on six different fixed-interval schedules
when records are averaged after superimposing breakpoints (see text). Four-sec time segments were used for
FI 64-, 128-, 256-, and 512-sec. One- and 2-sec time segments were used for FI 16- and 32-sec respectively.

examination of this figure shows that the
breakpoint distributions are highly variable
and approximately normal in form. There is,
however, a slight tendency for the longer in-
tervals (FI 256-sec and 512-sec) to be more
variable and negatively skewed. The break-
point distributions for the other birds were
quite similar to the one shown.

Figure 7 presents the breakpoint averaged
over all birds as a function of fixed-interval
length. The mean breakpoint appears to be
linear with a slope of 0.67 (least-squares esti-
mate). Table 2 presents the results of an anal-
ysis of variance on log breakpoint. The log
transformation was used because (1) the stan-
dard deviation of the breakpoint was an ap-
proximately linear function of the mean
breakpoint, and (2) the distributions were ap-
proximately normal in form. Both fixed inter-
vals and subjects are significant. There is no

effect due to the order in which the birds ex-
perienced the schedules. However, fixed-
interval effects account for 999, of the total
variance, i.e., the effect due to subjects is rela-
tively unimportant. This means that the value
of the FI almost exclusively determines the
breakpoint and there is relatively little inter-
subject variability.

Table 2
Log Breakpoint (Analysis of Variance)

Source Squares  d.f. F P Tot.
Sum of AR
FIs 52.56 5 13025 .005 999,
Subjects 0.20 5 4849 .005 0%,
Order 0.04 5 1.089  ns. 0%,
Residual 0.16 20
S.S. Total 5296 35
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Fig. 6. Breakpoint distributions for Bird 451 on six different fixed-interval schedules. Each distribution was

normalized so that the area summed to 1.0.

Figure 6 showed that the time from the be-
ginning of the interval to the breakpoint was
variable. This implies that the time from the
breakpoint to reinforcement also varied. For

400
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80 100 180 200 200 300 330 400 480 300
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Fig. 7. Breakpoint averaged over six birds as a func-
tion of fixed-interval length. The slope of the line
(method of least squares) is 0.67.

example, on FI 256-sec the breakpoints ranged
from 32 to 256 sec with a mean of 170 sec.
Therefore, the time from the breakpoint to
reinforcement averaged 86 sec with values
ranging from 224 sec to 0 sec. In a sense, then,
the bird is on a VI schedule in the second
state, where the interreinforcement intervals
are determined by the bird’s breakpoint dis-
tribution. Responding in the second state,
then, would be expected to be similar to re-
sponding on a VI, and in particular, it would
be expected that rate of response in the second
state would be an increasing function of rate
of reinforcement in the second state. (Second-
state rate was obtained by averaging rate in
consecutive time segments after the break-
point for each bird and then taking the aver-
age over birds.)) Figure 8 (unfilled circles)
shows that rate of response in the second state
is, with the exception of FI 32-sec, an increas-
ing negatively accelerated function of rate of



150~
w
-
D
Z 120
H
@«
w
a 90}
(]
w
(73
3
a o1
[}
g @ CATANIA & REYNOLDS VI DATA
301 O SECOND STATE RATE
! | 1 1 1

1 3 1] T )
REINFORCEMENTS PER MINUTE
Fig. 8. Response rate in state 2 (unfilled circles) as a
function of rate of reinforcement in state 2. The filled
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reinforcement in the second state. These data
are similar in form to those (filled circles) ob-
tained by Catania and Reynolds (1968) for
variable-interval performance. First-state rate,
on the other hand, was approximately con-
stant over FI values (4.8, 4.2, 4.2, 4.2, 3.6, and
3.0 responses/min for FI 16-, 32-, 64-, 128-,
256-, and 512-sec respectively).

Figure 9 presents the overall rate of response
(solid circles) as a function of the frequency
of reinforcement. Response rate seems to in-
crease, level off, and then increase again as
the rate of reinforcement increases. A com-
parison of Fig. 8 and 9 indicates a discrepancy
between these two measures. To the extent
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Fig. 9. Overall rate of responding (filled circles) as a
function of scheduled rate of reinforcement. The un-
filled circles represent the predictions of the two-state
model (see text).
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that the two-state analysis is correct, the over-
all rate should be predictable from the rate in
the second state, the rate in the first state, and
the average breakpoint. Accordingly, overall
rate was predicted using the following form-
ula.

_ (Ry X B + (FI-B) X Ry)
Rv— 1 I 2,

where,
R, = overall rate
FI = fixed interval
B = Breakpoint
R, = first state rate
R, =second state rate

The open circles in Fig. 9 are the predicted
rates. The agreement is quite close. The
“bend” in the overall rate function can be
accounted for in terms of the length of the
breakpoint and the rates of response in the
first and second states.

Table 3 presents analyses of variance for

Table 3

Overall Rate (Analysis of Variance)

Sum of % S.S.
Source Squares df. F P Tot.
FIs 1.313 5 480 <0.005 319
Subjects 1.464 5 536 <0.005 349,
Orders 0.389 5 1.42 n.s.
Residual 1.093 20
S.S. Total 4258 35

Second-State Rate (Analysis of Variance)

Sum of %S.S.
Source Squares d.f. F P Tot.
FIs 7.82 5 810 0001 429
Subjects 4.58 5 475 001 259,
Orders 2.37 5 246 ns. 139,
Residual 38 20
S.S. Total 18.64 35

second-state rate and overall rate to determine
the relative contributions of fixed-interval
values, subjects, and order of running. As
Table 3 shows, both FIs and subjects have a
significant effect on the two rate méasures
while order of running has no significant ef-
fect. However, FI value accounts for a greater
proportion of the variance in second-state rate
(429%,) than it does for overall rate (31%,). This
suggests that FI value primarily influences
second-state rate and, that as a result of aver-
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aging two different kinds of behavior (first
and second state), the influence of FI value on
overall rate is diminished.

DISCUSSION

When responding is not uniform over time,
overall measures of response rate often obscure
or ignore the pattern of responding. For in-
stance, Weiss and Moore (1956) averaged rate
over consecutive 18-sec periods of FI 180-sec.
They found that average rate was approxi-
mately a linear function of time since rein-
forcement. However, such results may be ob-
tained even if fixed-interval performance is
break-and-run, as long as the breakpoint is
variable. Sidman (1952) showed that a con-
tinuous curve can be obtained from averaging
several discontinuous ones, providing that the
discontinuities do not overlap. As a result,
such averaging techniques may misrepresent
the pattern of behavior on a fixed-interval
schedule.

This problem was handled in the present
experiment by using a least-squares technique
to estimate the point of maximum acceleration
(the breakpoint) for each interreinforcement
interval, and subsequently averaging rate after
superimposing the breakpoints. The obtained
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averages indeed appear by inspection to re-
semble a majority of the individual records
(see Fig. 1 and 4). Furthermore, if the break-
point averaging technique is used to obtain
average records for several “scalloping” pat-
terns, the obtained break-and-run pattern is
demonstrably not an artifact of the averaging
technique.

Figure 10 presents four theoretical response
patterns on a fixed-interval schedule. In Fig.
10a, shallow scallops were generated, assuming
that rate increased linearly over the interval.
(Specifically, R = A X T where T is the time
since reinforcement and R is the response rate.
The values of A were chosen so that the mean
number of responses per interval and its range
were representative of the values obtained for
FI 256-sec.) In Fig. 10b, sharp scallops were
generated, assuming that rate increased ex-
ponentially over the interval. (Specifically,
R = A X (e0925T — 1.0), where T is the time
since reinforcement and R is the response rate.
The values of A were chosen so that the mean
number of responses per interval and its range
were representative of the values obtained for
FI 256-sec.) Figure 10c presents cumulative
records composed of mixed sharp scallop and
break-and-run performance, while Fig. 10d
presents samples of pure break-and-run per-

R

Fig. 10. Four hypothetical patterns of responding on a fixed-interval schedule. The figure to the right of each
pattern is the average cumulative response record obtained by using the breakpoint averaging technique.
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formance. (The breakpoints were chosen so
that their mean was approximately two-thirds
of the interval value and their range was rep-
resentative of the breakpoints occurring on FI
256-sec.) The average cumulative record ob-
tained using the breakpoint averaging tech-
nique is presented to the right of the theoret-
ical records for all four patterns of responding.
In each case, the breakpoint averaging tech-
nique accurately reproduces the form of the
original curves. A comparison of the average
cumulative records from the present experi-
ment (Fig. 4 and 5) with Fig. 10 shows that the
actual pattern of responding more closely ap-
proximates the pure break-and-run perform-
ance than any of the other theoretical types of
performance.

In addition, several features of this break-
and-run performance suggest that a fixed-
interval schedule after extended training can
be considered a multiple extinction variable-
interval schedule. That is, the first state can
be considered as a temporally discriminated
post-reinforcement extinction period followed
by a second component (state 2) that termi-
nates with reinforcement. Since the breakpoint
or point of transition from one component to
the next is variable (see Fig. 6), this means that
the time from the breakpoint to reinforcement
will also vary from interval to interval. Hence,
responding in the second state will be rein-
forced on a variable-interval schedule, the pa-
rameters of which are determined by the
parameters of the breakpoint distribution.

Several factors suggest the correctness of this
analysis. First, the response rate in the first
state (extinction component) is low and ap-
proximately constant. Second, the response
rate in the second state or VI component is
high and approximately constant, i.e., behav-
ior characteristic of VI schedules. Third, the
function relating response rate and reinforce-
ment frequency in the second state is similar
in form to the equivalent function on straight-
forward VI schedules (see Fig. 8). The major
difference between these two functions is that
response rate in the second state is consider-
ably higher than on equivalent VI schedules.
This might possibly be due to a ‘“‘contrast”
effect. Catania and Gill (1964) showed that
interruption of responding on FI with extinc-
tion led to an increase in FI rate following
the extinction component. Perhaps the “con-
trast” between the temporally discriminated
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post-reinforcement component and the second-
state VI component is responsible for the high
rates in state 2.

If the present analysis is correct, it suggests
that fixed-interval responding, after extended
training, consists of two components: a tem-
porally discriminated post-reinforcement in-
terval, followed by a rapid transition to a high
response rate component with the point of
transition occurring approximately two-thirds
of the way through the interval. Several in-
vestigators (Cumming and Schoenfeld, 1958;
Mechner, Guevrekian, and Mechner, 1963;
and Sherman, 1959) have reported such break-
and-run behavior on fixed-interval schedules
after extended training. Furthermore, Berry-
man and Nevin (1962), Chung and Neuringer
(1967), and Sherman (1959) have obtained
linear relations between post-reinforcement
pause and average interreinforcement interval
with slopes close to two-thirds.

On the other hand, many investigators
(Keller and Schoenfeld, 1950; Skinner, 1953;
Ferster and Skinner, 1957; and Dews, 1962)
have characteristically found a different pat-
tern to fixed-interval responding. According
to these investigators, rate is a smoothly in-
creasing function of time since reinforcement,
i.e., there are no discontinuities in the per-
formance. Since this so-called scallop pattern
of responding is at least as well documented
as the break-and-run pattern, it is quite likely
that both may appear at different stages in the
development of fixed-interval responding. In-
deed, Cumming and Schoenfeld (1958) and
Sherman (1959) argued that the scallop pat-
tern is characteristic of earlier performance,
and that the break-and-run pattern appears
only after extended training. Sherman (1959)
also suggested that the break-and-run pattern
applies better to shorter intervals and may not
appear for FIs of 9 min or greater. The present
data (see Fig. 4 and 5) tend to support this sug-
gestion. There may be other variables, not
determined by the present work, that deter-
mine when and if a break-and-run pattern
will occur.

APPENDIX

The problem consists of fitting a straight
line to each leg of the cumulative record so
that the sum of squared deviations from these
lines is minimized. The major complication
is that the intersection of the lines is one of
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the parameters to be determined. The method
used here is an iterative one in which the
point of intersection is systematically varied
until the sum of squared deviations is min-
imized.

The FI is divided into n time periods of
z-sec duration. This has the effect of quantiz-
ing the x axis of the cumulative record. The
cumulative number of responses up to and
including (i)th time segment is designated by
y;. Its corresponding time segment is desig-
nated as x;. Assume that the breakpoint occurs
between time segment m and time segment
m + 1. According to the model, the relation
between y, and x; is

L yy=ax, for x;, =x,
¥1 = b(x; — X)) + axy, for x; > x,
If new constants are defined a’=a(z) and
b’ = b(z), equation I can be rewritten
II. y, = a’(i) fori=m
yi=a’(m)+ b’i—m) fori>m
These equations can be written in matrix
form as follows

III. Y=XB where
r l 0 N
0
Y1 2 .
p£ .. m
. a/
Y=| -|x=|™ 0 B= [ ]
) m 1 b
. m 2 n-m
Ya .
(m n-m |

Least-squares theory offers a unique solution
to these equations which minimizes the sum
of squared deviations if, and only if, the deter-
minant of X’X # 0. This solution is given by
equation IV (Greybill, 1961).
IV. B = (X’X)—-1X’Y

It can easily be shown that the determinant
(D) of X’X+#0 for 1 =m=n - 1.

Least-squares theory shows also that the sum
of squared deviations is equal to Y'Y — B’X’Y.
The value of m that minimizes this function
is found by solving the equations for each
integral value of m between 1 and n. (In the
case where the rate was identical throughout
the interval, it was assumed that the break-
point occurred at the beginning of the inter-
val. If the reinforced response was the only
response in the interval, it was assumed that
the breakpoint occurred at the end of the in-
terval) The value m’ that minimizes the
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sum of squares is multiplied by z to obtain the
breakpoint. The first-state rate is given by a’/z
and the second-state rate by b’/z.

Obviously, the larger the size of the time
segment z, the more inaccurate the estimate
of the breakpoint. Preliminary runs indicated
that time segments from 0.5 to 4 sec do not
seem to affect the estimate of breakpoint for
FIs of greater than 64 sec. In order to minimize
computer time, 4-sec segments were used for
FI 64-, 128-, 256-, and 512-sec. One- and 2-sec
segments were used for FI 16 and 32-sec re-
spectively.
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